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Fig. 1 
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where ‘Yn are zeros of the Bessel function Jr &) = 0. 
In this case the second boundary condition 

e,.(V1 + V3)= 0 for 

is also satisfied. 
In Fig. 1 the curve 1 represents 

El1 = en (y,*) for v = 0.3 of the 

shortening of the plate radius 

the relationship 
critical relative 

The curve 2 corresponds to the exact solution of axisymmetric bifurcation of equilib- 
rium of a circular cylinder compressed on the lateral surface by a uniform pressure. 

This result was obtained in f53. 

The straight line 3 corresponds to the classical linear theory of buckling plates. 
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The determination of the state of stress and strain of a membrane shell of negative cur- 
vature reduces to the requirement of solving a system of hyperbolic-type equations. The 
boundary value problem for such a system does not always have a solution, and hence, 
such a problem is not generally correct. The following boundary value problem will be 
examined herein for the system of membrane theory equations in the case of shells of 
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revolution of negative curvature. One static and one geometric tangential boundary con- 
dition [l] will be given on each edge of the shell, i.e. one stress resultant and one dis- 

placement in the plane tangent to the shell middle surface will be given at each point 
of the edge. In this case the problem separates into two: a static problem consisting of 
solving the equilibrium equations with the static boundary condition taken into account, 
and a geometric problem consisting of solving the equations for the displacements which 
govern small flexures of the shell, with the geometric boundary condition taken into 
account. If the directions of the displacements and stress resultants given on the shell 

edge are mutually orthogonal here, both problems will be conjugate. Because of the 

existence of alternative theorems in this case Cl]. the solvability of one problem defines 
the condition for solvability of the other. Each of these problems will be a boundary 
value problem for the appropriate hyperbolic system of equations, and the investigation 

of the correctness is made first for the static problem. It will be show here in addition 
that when just geometric tangential boundary conditions are given, but two on each edge 

of the shell, then the problem turns out to be correct. 

The boundary value problem for hyperbolic equations has been examined in the liter- 
ature, in particular for the equation or system of equations of string vibrations in [Z-6]. 

It has been shown in the case of Dirichlet problem for the string equation that the bound- 
ary value problem cannot have a solution if the ratio of the sides of the rectangular 
domain in which the solution is defined is a rational number. The presence of an every- 
where dense set of inadmissible domain dimensions results in the need to define the con- 
ditions under which the boundary value problem may be posed correctly. Some correct- 
ness conditions for the boundary value problem for the system of equations of string vi- 
brations given in a square domain have been examined by Sobolev [4]. 

The boundary value problem in shell theory has been considered for some particular . 
shells of negative curvature by Vlasov [7] and Sokolov [8], and a dense set of inadmis- 

sible domain dimensions has also been disclosed. The Dirichlet problem occurs here 

when the static or geometric tangential boundary conditions are given in the coordinate 

line directions. The Dirichlet problem for the system of equilibrium equations has been 
examined in [7]. and a geometric problem with oblique (not coordinate) tangential bound- 
ary conditions has been considered in [8] for a one-sheeted hyperboloid. As an experi- 

ment realizing the Dirichlet problem, Vlasov demonstrated the model of a thin-walled 
shell in the shape of a one-sheeted hyperboloid, whose edges were fixe,d in conformity 
with the case of one of the coordinate stress resultants in the plane tangent to the shell 
surface vanishing at each edge. For some dimensions corresponding to incorrectness of 
the problem the shell would possess high deformability in the case of a special method 
of loading its lateral surface. This fact shows that lack of a solution of the membrane 
theory equations corresponds actually to a real change in shell behavior. 

In [9] Gol’denveizer has shown that taking account of the everywhere dense set of 
shell dimensions for which there is no solution to the problem does not always have prac- 
tical meaning, since within the span of membrane theory we are interested only in solu- 
tions whose variability indices are not too great, and the denseness of such solutions 
should be of a specific order. 

Conditions for the existence and correctness of solutions of the static problem are con- 
sidered herein for shells of revolution of negative curvature for different tangential bound- 
ary conditions.The boundary value problem is to determine the solution of a second 
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order equation with a skew derivative given on the boundary. 

1, The membrane state of stress of a shell of revolution is described by a system of 
equilibrium equations [1] which can be written as follows for the coordinate stress result- 
ants T and S in a plane tangent to the shell middle surface 

(1.2) 

where r = r (z) is the radius in a section perpendicular to the s-axis of revolution 
of the shell, the prime denotes differentia~on with respect to the axial coordinate z , 
A is the coefficient of the first quadratic form, @ is the angular coordinate, ?’ and 6’ 

are the normal and tangential stress resultants, respectively. in a shell element bounded 
by coordinate lines, X, Y, 2 are the external loading components. 

The solution of the system of equations (1.1) in a rectangular domain 

Q (0 %C 2 < H, 0 < p < 2n) 

is considered for boundary conditions of the form 

k, T (0, B) + lEzs (0, B) = R, 6% ki2 + Ic2% + 0 (1 J) 

ka T (Ii, p) + k,J (H, p) = Rt @), k32 + k,2 =ic- 0, kt = conSt 

We call the problem correct if there exists a unique solution for a given H, and the 
unique solution exists for a sufficiently small change in H. 

To investigate the correctness of .the problem, let us consider the homogeneous equa- 

tions corresponding to (1. l), (1.2) since it is necessary that the homogeneous problem 
have just a trivial solution for the solution to exist in the general case. In the case of 

the homogeneous problem the system of equations (1.1) can be reduced to one equation 

by using the stress function cl, 

a20 1 a a0 

-F=~-‘2- ff i?Z a.2 ’ 
T=-++, 

According to (1.3), the homogeneous boundary conditions corresponding to (1.2) can 
be written as 2 ;_ o k A 80 

I- x r 
----j-kk?+O, klZ+k,2+0 

(1.4 

For shells of negative curvature rr” > 0, and hence,(l. 3) is of hyperbolic type. We 
henceforth assume that the function r (2) has the required number of continuous deriv- 
atives. The correctness of the problem described by (1.3), (1.4) is defined by a theorem. 

Theorem. A set of values k,, k,, k3, k4 exists for given dimensions of the domain 
of definition of the solution so that the problem (1.3), (1.4) will be correct. 

Proof. Let us represent the solution of (1.3) as a formal series 0 =I 2 O)n(~, p), 
where the terms of the series satisfy (1.3) and have the form ?L 

0n (2, b) = ‘F] (z, n) cos nB -t- rfz (2, n) sin + (1.5) 

Substituting (1.5) into (1.3) and (1.4). we obtain that ‘p1 (z) and ‘pz fz) satisfy the equa- 
tion (r%fl’)’ -+- n%r”cp =-- 0 fi.Q 

and boundary conditions of the form 
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z=o, - nhcpl + k,cp,’ = 0, nhcp, + k,cpl’ = 0 (21 = - klA (0)/r(O)) 
z = H, - nl,cpl f k4q1’ = 0, nl,rp, + k,cpl’ = 0 (13 = - k3A (H)lr (ff)) 

Let us represent ‘pl and ‘pZ as 

‘pl = A$,:+ B$,, ‘pz = C$I + D&t A, B, C, D = const 

where $1 and q2 satisfy (1.6) and the initial conditions 

$1 (0) = 0, +I’ (0) = n, $2(O)= 1, 1pz’(O)=O. 
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(1.7) 

(1.6) 

(f.9) 

Let us substitute (1.8) into (1.7). The system of equations in A, B, C,D obtained here 
can have a nontrivial solution when 

I 0 - 11 ka o I 
kz 0 0 h 

- nl& (H) - nl3qz(ff) k&‘l (HI k&z’ (H) = ’ (1.10) 

k&1 (4 4%’ (HI nl39i (HI nl34k (HI 

Condition (1.10) corresponds to possible incorrectness of the problem, and if the deter- 
minant is not zero, the problem is solvable. Condition (1.10) is equivalent to the follow- 
ing : n&lh W + kPk4qZt (H) = 0, nl,k,$, (H) - hk$Jh’ (HI = 0 (1.11) 

which will be called the incorrectness conditions. Let us make the change of variable 

Then (1.6) is converted to the form [lo] 

CPU r? 

F + In” - Q (411 U = 0, Q (El = Q (2 (EN = 
(I 

- - f2 &sry’4 

(+*))'a dz 

For fairly large n its solution can be represented in the asymptotic form 

u, = c1 sin nE + 0 (n-l), ul’ = ncl co.3 nE + 0 (1) 
u2 = c2 cos nE + 0 (n-l), 21%’ = - nc, sin nE + 0 (1) 

and putting c1 = G’+ (a)/~” ((I), c2 = vfl (n) r” ((I), respectively, we obtain 

91(z) = Cl F;~r~~~jz) + 0 (+) , $1’ (2) = nCl (-$)I ‘ Cos nE (2) + 0 (1) 

$2 (4 = 
cpcos nC; (3) 

(++,, )y4 .- + 0 (+) , $2’ (2) = - nc2 (-$-)‘” sin nE (2) + 0 (1) 

Substituting this latter into the incorrectness conditions (1. ll), we obtain 

Assuming 11, l,, k,, k4 to be nonzero, let us introduce the notation p = 11/A2, Q = l,lk,, 

which denote quantities proportional to the slopes of the stress resultants on the shell 

edges. Then the incorrectness conditions (1.11) will determine some curves in the(p, 4) 
plane for different n , or points of intersection of the corresponding curves. If $; (H), 

$i’ (H), i = 1,2 are not zero, then conditions (1.11) can be represented as 

41 (W pq = -% (HI, n% (W ‘I = $1’ (W P 
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and they jointly define possibly two points of intersection of two branches of a hyperbola 

with a straight line. Let us examine the case when I&(H) and I&‘(H) may be zero. 

Let $I (H) = &’ (H) = 0. Then the first of Eqs. (1.11) is satisfied identically. Since 

$2 (H) and q,‘-(H) are not zero, otherwise the solutions I&~ (2) would be trivial because of 

the uniqueness of the solution of the Cauchy problem for (1.6). and would not satisfy the 

customary conditions (1. 9), the incorrectness condition has the form of an equation of a 
straight line 

e2 (HI B = $1’ (H) p 

Let q2 (H) = $r’ (H) = 0. In this case the second equation of (1.11) is satisfied iden- 

tically, and the first has the form of an equation for a hyperbola 

nqh (HI Prl = - $2’ W) 

According to (1.12), as n + 00 the incorrectness curves are grouped in the neighbor- 

hood of the curves - 
Pq I/r (O) r (W = I/r” (0) r” (ff), q I/r# (0) r(H) = p I/r” (H) r (0) 

Only a finite number of incorrectness curves exist outside the neighborhood of these 

latter, and they have the form of straight lines or hyperbolas. Hence, for given H there 

always exists a point in the (p, q) plane in whose neighborhood there are no points of 

incorrectness curves because of the continuous dependence of the left sides of (1.11) on 

H. The theorem is proved. 

Let us consider the incorrectness condition (1.11) for the cases n = 0 and n = 1 
by assuming that l,, I,, k,, k, are nonzero. 

For n = 0 , Eq. (1.6) has the solution cp = cl Jre2dz j- C, , and the incorrectness 

conditions (1.11) are: k2rb1 (0) = 0, k,r2 (H) = 0, i.e. the problem is correct for 

k,, k, not zero. 

Let us note that the case n = 0 corresponds to the solution of the homogeneous equa- 

tions (1.1) in the form T E 0, S = S (2). The solution S s 0, T = T (z) follows 

from (1.3) if Q, is assumed independent of Z. The case IZ = r) is henceforth not taken 

into account. 

For 71 = 1 , Eq. (1.6) is transformed by the substitution q = r-If into f” = 0 , 
and the solution for Cp will be: ‘p = (crz + cs) r. Defining 

+I = r (0) zr-l (z), % = [r’ (0) z + r (0)l r-l (z) 

we obtain the incorrectness conditions in the form 

Z,Z,Hr (0) r (H) + k,k, {r’ (0) r (H) - [Hr’ (0) + r (011 r’ (H)} = 0 

k,Z, [Hr’, (0) + r (0)I r (H) - Z,k, Ir (H) - Hr’ (H)l r (G) = 0 

Now, let us examine particular cases of the incorrectness conditions (1.11) when some 

of the coefficients ki are zero. 

The problem is solvable for any H in the case II = 0 (k, = 0) and hence is correct 

since in this case conditions (1.11) have the form $2 (H) = $s’ (H) = 0 , and are 
impossible for a solution I#~ (z) satisfying conditions (1.9). The problem is analogously 

always solvable when k, = 0. When either ,!a = 0 or k,= 0 the problem is also sol- 

vable since otherwise the determinant of the Wronskian for thesolutions ‘& (z) and 

$s (z) would be zero from conditions (1. ll), which again contradicts conditions (1.9). 

For shell theory these cases mean that the problem is always solvable if a coordinate 

stress resultant is given on oneedge, and one different from a coordinate stress resultant 

on the other. 
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Let us examine the case when two coefficients are zero, In these cases, the solution 
can be represented in the form of the following formal series: 

@ = 2 cp (2, n) cos (nP + PO) (1.13) 
n 

where cp (z) satisfies (1.6). Only four cases of the coefficients ki and Zi being zero have 
meaning, and according to (1.4) they correspond to the following boundary conditions 

for cp : k, = k4 = 0, cp (0, n) = cp (H, n) = 0 (1.14) 

I, = k2 = 0, f# (0, n) = cp’ (H, n) = 0 (1.15) 
II = k, = 0, cp’ (0, n) = cp (H, n) = 0 (1.16) 

II = 13 = 0, cp’ (0, n) = ‘p’ (H, n) = 0 (1.17) 
In all these cases the incorrectness conditions (1.14)-(1.17) correspond to cases of 

values of the dimension of the domain H agreeing with the zeros or extremum points of 

the solutions of (1.6). According to the oscillation theory, the number of zeros or extre- 

mums in any interval of the z-axis tends to infinity as n --f 00. Therefore, in the neigh- 

borhood of each dimension there exists an everywhere dense set of shell dimensions for 
which the problem is not solvable. The considered cases of two coefficients being zero 
correspond to cases of either normal T or tangential S loading of the shell edges, and 
in these cases the problem is always incorrect. Let us investigate these cases in more 

detail. 
An expansion of the external loading components (denoting them by the common 

symbol P) in a series of the form p = 2 p (z no coS (np + “fo) 
, 

corresponds to a solution of (1.1) in the ftrm (1.3). 
let us call the problem N-correct, if it is correct for the first Nterms of the series 

expansion of the loading. 
The definition introduced for the correctness of the problem corresponds to the possi- 

bility of considering the existence of a solution for separate terms of an expansion with 
n < N, and we hence introduce such a definition. 

We call the shell dimensions for which the problem will not be solvable for some spe- 
cial kind of loading and given boundary conditions the natural shell dimensions corre- 

sponding to this loading and boundary conditions. 
In the considered case we determine the natural dimensions for a special loading of 

the form p (z, n) cos (nb + yo). Then for the boundary conditions (1.14)-(1.17) the 
natural dimensions of the shell coincide with the zeros or extremum points of the solu- 
tion of (1.6). By virtue of the congruence (comparison) theorem and the bounds accepted 

for the function r (z) (v” > 0) in each finite interval there exists only a finite num- 
ber of natural dimensions for each n, and hence, the problem can always be formulated 
N-correctly. That is, for the chosen number of terms in the expansion of a given load- 
ing, a dimension H can always be selected such that the problem will be correct. 

By using the congruence theorem for second order equations we can obtain estimates 
of the natural dimensions in the cases (1.14)-(1.17). 

For n > 2 the estimates are mn 
(1.18) 

e1 = min 9, q1 = max rr”, 8, = max ra, qz = min Trn 
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Here a = 1 in cases (1.14) ,(l, 1’7), and u = 2 in cases (1.15), (1.16). 
For cases (1.14)-(1.16). Eq. (1.6) is compared with the equation 

eirpu “i- ?Gq,cp = 0 (i=i,2) 

and the estimates (1.18) result from the Picone identity, suitably integrated (G, Sansone, 
“Ordinary Differential Equations”). The case (1.17) reduces to the case (1.14) if we go 
from (1.6) to the equation 

(+jj + J&o (U=rs(p’, u(O)=u(N) = 0) 

It is assumed here that 8i, Qi are not zero. 
For IL = 1 there are no natural dimensions in the case (1.14) ; in the remaining cases 

the natural dimensions are determined directly by using the solution of (1.6) which has 
the form cp= ($2 + ca)T’(~). 

Estimates obtained by using the congruence theorem depend essentially on the beha- 
vior of the function r (z) in a given interval. For example, let us consider the case (1.14). 
We reduce (1.6) by the change of variable cp = r-if to the form 

rf” + (?? - 1) r”f = 0 (f (0) = f W) = 0) 

It then follows from the congruence theorem that 
stm nm 

VW - 1) max Q (z) d H, (n) d 
l/(nz - 1) min Q (z) ’ 

Q(Z)=; (1.19) 

If Q (z) decreases rapidly as z + ~37 for example, Q (I) = ‘/,z-~ + 0 (~3, then 
because of the Kneiser theorem [lo] only a finite number of natural dimensions exists 

on the whole z -axis. If Q (z) grows without limit as z + w, then the lower estimate 

drops out. 
Moreover, even the existence of natural dimensions is not a sufficient condition for 

determination of their approximate values by (1.19). 

For example if mjn Q tz) = Q (L), L vQ(L)<mNm as L+cc 

then it is impossible to determine the upper bound from (1.19). 
In order to be able to improve the estimates, which is important in the evaluation of 

the first natural dimensions for given n and for m commensurable with n, let us consider 

variational principles of determining the natural dimensions. Let us examine a function- 

al of the form 12 

J = 
5 

r2qY2 - n2rr”cp2dz (1.20) 
0 

in the class of functions continuously differentiable and satisfying the boundary conditions 
of any of the cases (1.14)-(1.17) if L replaces H therein. Let us assume that in each 
case the interval fO,L] does not contain natural dimensions. In all cases, with the excep- 
tion of (1.7), the functional takes on the minimum value for the solution of (1.6) which 
will satisfy the appropriate boundary conditions. Since natural dimensions are not con- 
tained in the interval f0, L] , then cp = 0, hence min J = 0. Let us consider each 
case individually. 

Case 1. The functional J is defined on a set of functions satisfying the boundary 

conditions: 9, (0) = cp (L) = 0. S ince J = 0 only for tp = 0, then we have J > 0 
for the remaining ‘p. 

Let us introduce a function of two variables cp (z, g) which is continuousIy differen- 
tiable with respect to z and satisfies the conditions ~JI (0, E) = rp ($, E) = 0. Then 
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the functional 

J (El - \ rs (9 P (2, El - n% (2) rm (2) q+ (2, E) dz 
0 

will be greater than zero for E < H1, where H1 is the first natural dimension, i. e. 

the value of L for which a nonzero solution of (1.6) is possible for the considered bound- 

ary conditions. The value E = Ha*, for which J (Q = 0, will be an approximate 
value of the natural dimension. Evidently the approximate value of the natural dimen- 

sion obtained in this manner will be the upper bound of the exact value. Since the func- 
tional (1.20) has no extremum if the interval contains a natural dimension [lZ], then 

there always exists a function cp (z, 6) and a value E for which J (E) I= 0. 
Cases 0 and 3. The functional is considered’in a set of functions satisfying the 

respective conditions: cp (0) = cp’ (~5) = 0 or SD’ (0) = p, (L) = 0. One of the bound- 
ary conditions will be natural in each of these cases: either cp’ (L) = 0 or ‘p’ (0) = 0, 
and the function can be selected by satisfying just one bounda~ condition, either ip (0) = 
= 0 or ‘p (L) = 0, respectively. In these cases the determination of the natural dimen- 

sion occurs just as in Case 1. 

Case 4. .The functional J is defined in a set of functions satisfying the boundary 
conditions rp’ (0) = q’(L) = 0. For such boundary conditions the solution of (1.6) is 

not unique, and the functional will not be sign-definite. Hence, let us contract the class 
of functions by introducing an additional condition. Integrating (1.6). and taking account 

of the boundary conditions, we obtain that the solution should satisfy the condition 

b 

s 
rr”qdz = 0 

Then the functional takes on the exkemal value in the class of functions additionally 
satisfying this condition. Let us show that if rp is not the solution of (1.6)‘ then the func- 
tional will be greater than zero. It is sufficient to establish this for small L since the 
functional equals zero only for the solution of the equation because of the presence of 
the extremum. By virtue of the Buniakowski inequality we have 

I. L 2 L 

s 
rr”@dz = - cp’ rrsrpdz ,< 

s s ilS 
0 0 0 0 

r2gY2dz ~(~~rr”cpdz~dzj”< 

L 

< [S r2qf2dz f-$~[rrNcp2dz~ rr”d.z)dz]‘i’< 
0 0 ,I II 

I, 

< 
‘a 

IS 
r2qf2 dz i rr”q2dz 5 G [ rr”dzdzj”’ 

from which J. 

c 
;t 

and the positivity of J for fairly small C is evident. 
In the considered case both the boundary conditions are natural, and a class of func- 

tions not satisfying any boundary yditions can be considered, and a function satisfying 
the condition 

5 r (z) r” (z) 9 (2, E) dz = 0 
0 
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can be defined as the function cp (z, E). 
The approximate value of the natural dimension is determined from the equation 

J (E) = 0. 
Let us note that the functional (1.20) has a strong extremum in all the cases considered, 

and hence, the function cp ,(z, g) can be selected simply continuous and piecewise dif- 
ferentiable. In particular, to simplify the calculations it is sometimes convenient to 

select the function cp (z, E) piecewise linear. 

In order to find the approximate value of the next natural dimension we can consider 

the functional in the interval [Hr, L) r, 

J (n, L) = J r2 cf2 - n2rr”(p2 dz 
Hi 

Here H, is the first eigenvalue. The error in the second eigenvalue will depend on the 
error in the first, and such a method is applicable only to determine a small quantity of 

natural dimensions for given n. On the other hand, to evaluate large values of the natu- 
ral dimensions it is more convenient to utilize their asymptotic estimates obtained, say, 
by using the congruence theorem. 

Let us consider examples of the determination of the natural dimensions. 

A, Hyperbolic shell of revolution r = al/b’ + ( z - c)“/b. Equation (1.6) will be of 
the form 

Ub2 + (2 - ~1’1 cp’}’ + n2bz 
b2 + (z -c)’ 

cp = 0 

Let us make the change of variable z = c + b tg a, we obtain 

whose solutions are cos na and sin na. Let us define I#, (z) and $t (z) according to con- 
ditions (1.9). and substituting in the incorrectness relations (1.11). we obtain 

(1.21) 
[ l/b4 + (a2+ bz) c2 v/b4 + (a2 + b2) (H - c)2 kIks---a2b*k2k4] sin n arc tg b2 _ Cb:f _ c) = 0 

[ v b’ + (a2 + b2) (H - c)2 k2ks - l/-i_ b2) c?k4kl] cos n arc tg bGq = 0 

Hence, it is seen that the solution may not exist for all n, i.e. for any loading when 
the square brackets in the relations are zero. In this case 

kr f ab ks f ab 
-= -= 
B [bp + (a2 + b2) ~~1”~ ’ k4 [ b4 + (a? + b2) (H - c)2]“2 

If kl, k, (or k,, k4)are proportional to the cosines of the angles formed by the coordinate 
stress resultants 7’ and S and the direction of the given tangential stress resultant H on 
the edge z = 0 (or z =I H), then the obtained conditions mean that any dimension H will 

be natural when the direction of K at each point of the edge is perpendicular to the 
direction of the generator of the hyperboloid at this point. 

Let us examine the case k, = k4 = 0 , or ~sr = /i:, := 0 , and let us set c = Hl2, which 
corresponds to a symmetric hyperboloid relative to the coordinate axes. Here 

sin n arctg 4bH 
4b2--ff2 = 

0 

is necessary to satisfy the relationships (1.21). 
Solving the equation for the natural dimension H;we first obtain 

H,(n)=2bcscm” (m= 1, 2, 3 . . . . m<n) 
.n 

Secondly, we have H = 26 for odd n . This latter means that H = 2b will be natural 
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in these two cases for all loadings given by an odd function of j3. 
For the cases k, = k, = 0 , or kl = t = 0 we have 

cos n arctg 4bH 
@Z-HZ =” H,(n)=Zbcsc (2m2‘jl *)’ 

(m=O, 1,2,. . ; m<n) 

where H = 2b will be the natural dimension for all even n. 

B, “Power-law” shell r = A, (Z + c)“, Y (Y - 1) > 0. In this case (1.6) becomes 

[(z + c)2yCp’l’ + n2v (Y - I)(2 + ,.)2”-zcp = 0 (1.22) 

Its solutions exist in two forms. In case e,+ Y (Y - i)(G - I)-Ya> 0, we have 

‘PI = (2 + C)-“+I’( COS III (2 + cfn, (p2 = (z + c)-““‘~ fjjn In (z + e)‘n 

where conditions (1.1) have the form 

klks 
H+c 

pA(Ok,k,v(v-l)]sinIn(~)I”=0 
g-1 

-40~ 

A(z) = VI + .40%~ (z + c)~‘-’ 

Here, as is seen from the second relationship, no natural dimension exists for all n. 
Let us consider the case of natural dimensions coincident with the zeros of the solution 

of (1.6): k, = k4 = 0, which corresponds to assigning the coordinate stress resultant T. 
Here it is necessary that 

We hence obtain for the natural dimensions 

H,(n)=c 
( 
exp? --1 

n 

Let us compare the exact values (1.23) with the estimates obtained by 

(1.23) 

using the con- 
gruence theorem. To do this, let us utilize estimates in the form (1,19), which are in 
this case nm(c+L) Zrnc 

vv (y - 1) (n2 - 1) 2 H?n @) a 1/v (v - 1) (n2 - 1) 

For v = 2, PZ = 2, A = 1 we compute the lower bound 

H1 (2) >/ l/g J&c E 2.5748~ 

The exact value is in this case 

Hl(2) = exp -1 c 
> 

z 2.7848~ 

For the upper bound we consider the minimum of the functional 
4 

J (5) = Ao2 
s 

(z + ~)~“q’~ (z, 5) - n2v (Y - 1) (z + c)~“-~~P (z, 4) dt 

0 

We define the function q (z, E) as follows: 

Then we obtain 
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k = (v -- 1) [(n2 - 1) v + I] 

The least value of the upper bound is determined from the condition aJ/aq = 0. Then 

q= c4, 
E + 2c 

J(E)=(- !$5+4c+ ?$)/t# 

The natural dimension is determined from the condition J (E) = 0, which yields 

Hi (n) 6 6 ’ + v1 + (k- v)/3 c 
k-v 

In particular, for v = 2, n = 2, k = 7 we obtain 

Hi (2) < 2/s (3 + 21/6) c G 3.1596 c 

2. After the static problem has been solved, the strains are determined by utilizing 

the governing relationship of shell theory [I]. which can be represented in this case as 

follows : .Q= 
( 
1_zg - 

i 

T n T 
2& 7 e2 = t .rLz 

--- - 
j ,2Eh ’ w= J&s (2.1) 

Here E is the elastic modulus, d Poisson’s ratio, 2h the shell thickness. The geomet- 
ric problem of membrane theory for shells of revolution will be to integrate the equations 

for the displacements [I] of the form 

1 3AU 1 au r au 
A2 a2 !- +r”a” =E1+LcEp. _-+___=6) 

afi i r ap .+l 8~ r (2.2) 

under the following boundary conditions: tangential displacements of the form 

ClU (0, fv +c2v (09 I-9 = uo @I (2.3) 
w (H, B) + c4v (HY N = u1 (B) 

are given at points of each edge of the shell, where U, v are the displacements in the 
directions of the coordinate lines z and fi , respectively. 

The system of equations (2.2) is hyperbolic for r” > 0, let us introduce the func- 
tion @ by means of the formulas r2 acD aa 

u=--yj-x, v=r,p 
The homogeneous system (2.3) reduces to (1.3), and an investigation of the correct- 

ness of the geometric problem is possible in an analogous manner. When His a natural 
dimension, and the geometric problem is conjugate to the static problem, i.e. the direc- 
tion in which the displacement u is given in (3.3), is perpendicular to the direction of 
the stress resultant R given in (1.2) at each point of the edge, then the geometric prob- 

lem is solvable only upon compliance with the conditions presented in [l]. 
Now, let us examine the purely geometric problem when two tangential displacements 

are given on each edge of the shell. According to (i?. 1). (‘2.2) and taking account of the 

homogeneous equilibrium equations, the following relationship is valid : 
H2n 

1 - 20 

I7 In H 2% 

=c SK . 
0 (I 
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This relationship is a particular case of the more general relationship obtained in [l] 
for arbitary shells. 

Assigning two tangential boundary conditions for the displacements on each shell is 
equivalent to assigninig the displacements u and v. In the case of the homogeneous 
geometric problem, U = v = 0 on each shell edge. Then the integral will be zero 
on the boundary. Since - 1 < a\< lJ9, the expression in the paraentheses in the first 

integral is always positive, and the integral may be zero only when T = t!? = 0. It 
follows from (2.1) that Q = as = o = 0 and the homogeneous geometric problem 

reduces to the solution of the homogeneous equations (2.2). For the boundary conditions 
u = v = 0 on the edges, the homogeneous equations (2.2) have only trivial solutions, 
and this means that the geometric problem is solvable in this case. 

Moreover, it is easy to see that natural dimensions do not exist, for example, in the 

case of the following tangential boundary conditions: displacements given on one edge, 
and stress resultants, or a displacement and stress resultant given on the other. 

The author is grateful to A. L. Gol’denveizer for formulating the problem, and for 
assisting in the research. 
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